In contemporary data analysis, it is increasingly common to work with non-stationary complex data sets. These data sets typically extend beyond the classical low-dimensional Euclidean space, making it challenging to detect shifts in their distribution without relying on strong structural assumptions. This paper proposes a novel o ine change-point detection method that leverages classiers developed in the statistics and machine learning community. With suitable data splitting, the test statistic is constructed through sequential computation of the Area Under the Curve (AUC) of a classier, which is trained on data segments on both ends of the sequence. It is shown that the resulting AUC process attains its maxima at the true change-point location, which facilitates the change-point estimation. The proposed method is characterized by its complete nonparametric nature, high versatility, considerable exibility, and absence of stringent assumptions on the underlying data or any distributional shifts. Theoretically, we derive the limiting pivotal distribution of the proposed test statistic under null, as well as the asymptotic behaviors under both local and xed alternatives. The localization rate of the change-point estimator is also provided. Extensive simulation studies and the analysis of two real-world data sets illustrate the superior performance of our approach compared to existing model-free change-point detection methods.

3910 3104
KK 1336
Test of independence is of fundamental importance in modern data analysis, with broad applications in variable selection, graphical models, and causal inference. When the data is high dimensional and the potential dependence signal is sparse, independence testing becomes very challenging without distributional or structural assumptions. In this paper, we propose a general framework for independence testing by first fitting a classifier that distinguishes the joint and product distributions, and then testing the significance of the fitted classifier. This framework allows us to borrow the strength of the most advanced classification algorithms developed from the modern machine learning community, making it applicable to high dimensional, complex data. By combining a sample split and a fixed permutation, our test statistic has a universal, fixed Gaussian null distribution that is independent of the underlying data distribution. Extensive simulations demonstrate the advantages of the newly proposed test compared with existing methods. We further apply the new test to a single cell data set to test the independence between two types of single cell sequencing measurements, whose high dimensionality and sparsity make existing methods hard to apply.




